If it's not what You are looking for type in the equation solver your own equation and let us solve it.
41x^2+73x+4=0
a = 41; b = 73; c = +4;
Δ = b2-4ac
Δ = 732-4·41·4
Δ = 4673
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(73)-\sqrt{4673}}{2*41}=\frac{-73-\sqrt{4673}}{82} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(73)+\sqrt{4673}}{2*41}=\frac{-73+\sqrt{4673}}{82} $
| 9v+18=-45 | | 2-9x/16-5x=0 | | x2x+14=26 | | x+.5+3x+1.5=3x-2 | | y–3+4=–15 | | p(p−6)=0 | | u/5-7=13 | | 13(y+1)=13 | | 16u+1=17 | | 10x-2x-2=20 | | 10x-20=40+7x | | 5×(2x-3)=35 | | 9+2x6=11x3 | | w12+4=8 | | k-3/7-2(k+4)/4=1 | | 3x+10⁰+x+50⁰=180⁰ | | 5x+3-2x-1=17 | | 5(x-3)-20(x-1)=20 | | 1−0,5(6−4x)=2(x−3) | | 72-16=8xX | | 4(5b-3)=3b-5 | | S=-16t^2+160 | | 5m+5=(2m–10) | | 39*39=x*x+6x+12 | | 32x–5.3x+4=0. | | 15=1/4x | | 3(x+A)=B*x+1 | | 2/k=3/6 | | (-2)=x²-3 | | (-5)=4-7x | | 256=x² | | 144=x² |